Omega-3 Free Fatty Acids Suppress Macrophage Inflammasome Activation by Inhibiting NF-κB Activation and Enhancing Autophagy
نویسندگان
چکیده
The omega-3 (ω3) fatty acid docosahexaenoic acid (DHA) can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR) 4 (also known as GPR120), a G-protein coupled receptor (GPR) known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.
منابع مشابه
The Role of Exogenous Hydrogen Sulfide in Free Fatty Acids Induced Inflammation in Macrophages.
BACKGROUND This study aimed to investigate whether exogenous hydrogen sulfide (H2S) can protect the RAW264.7 macrophages against the inflammation induced by free fatty acids (FFA) by blunting NLRP3 inflammasome activation via a specific TLR4/NF-κB pathway. METHODS RAW264.7 macrophages were exposed to increasing concentrations of FFA for up to 3 days to induce FFA-induced inflammation. The cel...
متن کاملNF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria
Nuclear factor κB (NF-κB), a key activator of inflammation, primes the NLRP3-inflammasome for activation by inducing pro-IL-1β and NLRP3 expression. NF-κB, however, also prevents excessive inflammation and restrains NLRP3-inflammasome activation through a poorly defined mechanism. We now show that NF-κB exerts its anti-inflammatory activity by inducing delayed accumulation of the autophagy rece...
متن کاملOmega-3 Polyunsaturated Fatty Acids Antagonize Macrophage Inflammation via Activation of AMPK/SIRT1 Pathway
Macrophages play a key role in obesity-induced inflammation. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert anti-inflammatory functions in both humans and animal models, but the exact cellular signals mediating the beneficial effects are not completely understood. We previously found that two nutrient sensors AMP-activated protei...
متن کاملDietary PUFAs attenuate NLRP3 inflammasome activation via enhancing macrophage autophagy
Dietary PUFAs reduce atherosclerosis and macrophage inflammation, but how nucleotide-binding oligomerization domain leucine-rich repeat-containing receptor protein (NLRP3) inflammasome activation and autophagy influence PUFA-mediated atheroprotection is poorly understood. We fed Ldlr-/- mice diets containing 10% (calories) palm oil (PO) and 0.2% cholesterol, supplemented with an additional 10% ...
متن کاملOmega-3 docosahexaenoic acid and procyanidins inhibit cyclo-oxygenase activity and attenuate NF-κB activation through a p105/p50 regulatory mechanism in macrophage inflammation.
The inflammatory response has been implicated in the pathogenesis of many chronic diseases. Along these lines, the modulation of inflammation by consuming bioactive food compounds, such as ω-3 fatty acids or procyanidins, is a powerful tool to promote good health. In the present study, the administration of DHA (docosahexaenoic acid) and B1, B2 and C1 procyanidins, alone or in combination, prev...
متن کامل